Local Trivializations of Suspended Minimal Cantor Systems and the Stable Orbit-Breaking Subalgebra

نویسندگان

چکیده

It is introduced an analogue of the orbit-breaking subalgebra for case free flows on locally compact metric spaces, which has a natural approximate structure in terms fixed point and any nested sequence central slices around this point. shown that minimal admitting Cantor slice, resulting $$C^*$$ -algebra stabilization Putnam associated to induced homeomorphism slice. This construction provides alternative characterization (up stabilization) by homeomorphisms spaces suspension such dynamical systems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-orbit Equivalence for Minimal Cantor Systems

This paper is about ‡ow-orbit equivalence, a topological analogue of even Kakutani equivalence. In addition to establishing many basic facts about this relation, we characterize the conjugacies of induced systems that can be extended to a ‡ow-orbit equivalence. We also describe the relationship between ‡ow-orbit equivalence and a distortion function of an orbit equivalence. We show that if the ...

متن کامل

Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

C*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems

Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2022

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-022-01820-3